unigraphique.com

Unlocking the Power of LlamaIndex: Advanced Techniques in Python

Written on

Chapter 1: Recap and Overview

In the previous installment of this LlamaIndex series, we delved into concepts such as Retriever Mode, Optimizer, and Response Synthesizer. If you haven't yet reviewed Part Three, make sure to check it out for a comprehensive understanding.

Chapter 2: Customizing Prompt Templates

Prompt Templates allow for the customization of the default query structure. The get_response_synthesizer function can be used to implement these templates, which include three main types:

  1. text_qa_template: A basic prompt that solicits an answer based on the provided context.
  2. refine_template: This template is designed to enhance (or refine) a previously given answer with new context.
  3. simple_template: A straightforward prompt that forwards the user's question to the LLM without modifications.

Here’s an example of how to configure these templates:

from llama_index.response_synthesizers import get_response_synthesizer

from llama_index.response_synthesizers import ResponseMode

from llama_index.prompts.prompts import Prompt

from llama_index.prompts.prompt_type import PromptType

from llama_index.prompts.default_prompts import DEFAULT_TEXT_QA_PROMPT_TMPL, DEFAULT_SIMPLE_INPUT_TMPL, DEFAULT_REFINE_PROMPT_TMPL

response_synthesizer = get_response_synthesizer(response_mode=ResponseMode.COMPACT,

text_qa_template=Prompt(DEFAULT_TEXT_QA_PROMPT_TMPL, prompt_type=PromptType.QUESTION_ANSWER),

refine_template=Prompt(DEFAULT_REFINE_PROMPT_TMPL, prompt_type=PromptType.REFINE),

simple_template=Prompt(DEFAULT_SIMPLE_INPUT_TMPL, prompt_type=PromptType.SIMPLE_INPUT)

)

The default mode, ResponseMode.COMPACT, first employs the text_qa_template for the initial node, followed by the refine_template using the previous result. The simple_template is included for adaptability but isn't utilized in this example.

Section 2.1: Understanding Templates

text_qa_template

The text_qa_template is designed to ask for an answer based on the given context:

DEFAULT_TEXT_QA_PROMPT_TMPL = (

"Context information is below.n"

"---------------------n"

"{context_str}n"

"---------------------n"

"Given the context information and not prior knowledge, "

"answer the question: {query_str}n"

)

refine_template

The refine_template is slightly more complex. It allows for the refinement of responses when new context is provided:

DEFAULT_REFINE_PROMPT_TMPL = (

"The original question is as follows: {query_str}n"

"We have provided an existing answer: {existing_answer}n"

"We have the opportunity to refine the existing answer "

"(only if needed) with some more context below.n"

"------------n"

"{context_msg}n"

"------------n"

"Given the new context, refine the original answer to better "

"answer the question. "

"If the context isn't useful, return the original answer."

)

simple_template

The simple_template forwards the query as is, without any contextual input:

DEFAULT_SIMPLE_INPUT_TMPL = "{query_str}"

Chapter 3: Practical Application

To illustrate how these templates can be integrated into your application, here’s a sample implementation that focuses on the Query Engine:

from llama_index import StorageContext

from llama_index.storage.docstore import SimpleDocumentStore

from llama_index.storage.index_store import SimpleIndexStore

from llama_index.vector_stores import SimpleVectorStore

from llama_index import ServiceContext

from llama_index.node_parser import SimpleNodeParser

from llama_index.embeddings.openai import OpenAIEmbedding

from llama_index import LLMPredictor

from llama_index.indices.prompt_helper import PromptHelper

from llama_index.logger.base import LlamaLogger

from llama_index.callbacks.base import CallbackManager

from llama_index.indices.list.base import ListRetrieverMode

from llama_index.response_synthesizers import ResponseMode

from llama_index.response_synthesizers import get_response_synthesizer

# Setting up the Storage Context

storage_context = StorageContext.from_defaults(

docstore=SimpleDocumentStore(),

vector_store=SimpleVectorStore(),

index_store=SimpleIndexStore()

)

# Creating the Service Context

llm_predictor = LLMPredictor()

service_context = ServiceContext.from_defaults(

node_parser=SimpleNodeParser(),

embed_model=OpenAIEmbedding(),

llm_predictor=llm_predictor,

prompt_helper=PromptHelper.from_llm_metadata(llm_metadata=llm_predictor.metadata),

llama_logger=LlamaLogger(),

callback_manager=CallbackManager([])

)

# Indexing documents with context

list_index = ListIndex.from_documents(

documents,

storage_context=storage_context,

service_context=service_context

)

# Synthesizing responses

response_synthesizer = get_response_synthesizer(response_mode=ResponseMode.COMPACT,

text_qa_template=Prompt(DEFAULT_TEXT_QA_PROMPT_TMPL, prompt_type=PromptType.QUESTION_ANSWER),

refine_template=Prompt(DEFAULT_REFINE_PROMPT_TMPL, prompt_type=PromptType.REFINE),

simple_template=Prompt(DEFAULT_SIMPLE_INPUT_TMPL, prompt_type=PromptType.SIMPLE_INPUT)

)

# Query Engine setup

query_engine = list_index.as_query_engine(

retriever_mode=ListRetrieverMode.DEFAULT,

node_postprocessors=[],

response_synthesizer=response_synthesizer

)

response = query_engine.query("Please summarize this article in 300 characters")

for i in response.response.split("。"):

print(i + "。")

Conclusion: Embracing LlamaIndex

LlamaIndex represents a significant advancement in artificial intelligence development. By enabling the enhancement of private data for LLMs, it facilitates more tailored, precise, and detailed AI responses. Whether you are a business aiming to enhance customer service interfaces, a researcher seeking rapid access to specific data, or a developer eager to expand the capabilities of AI, LlamaIndex provides a promising avenue for innovation.

📻 Stay tuned for more insights on trending AI implementations and discussions on my personal blog. If you're not a Medium member and wish to enjoy unlimited access, consider signing up through my referral link—it's less than the cost of a fancy coffee at just $5 a month! Dive in; the knowledge awaits!

🧙‍♂️ We are experts in AI applications! If you're interested in collaboration on a project, feel free to reach out, visit our website, or schedule a consultation with us.

Share the page:

Twitter Facebook Reddit LinkIn

-----------------------

Recent Post:

Unlocking the World of NFTs: A Beginner's Journey

Discover how to easily buy and mint your first NFTs with this beginner-friendly tutorial.

Financial Survival Strategies for Navigating a Changing World

Discover five essential strategies for financial survival in today's unpredictable landscape and adapt to new technologies.

Understanding the Planning Fallacy: Why Our Time Estimates Fail

Explore the planning fallacy and how it impacts our time estimates, alongside strategies to improve our planning processes.

The Paradigm Shift: Acknowledging UAP and Alien Intelligence

A significant number of academics now report sightings of UAPs, challenging long-held beliefs about UFOs and non-human intelligence.

Unlocking Epigenetics: Your Path to Longevity and Vitality

Explore how epigenetics influences health and longevity, emphasizing the role of lifestyle choices in shaping our genetic expression.

Essential Reads for UX Designers: 40 Must-Have Books

Discover 40 essential books for UX designers, perfect for enhancing your skills and understanding of user experience design.

Navigating Life with Faith and Conscious Choices for Fulfillment

Discover the journey of self-awareness and faith in living a fulfilling life.

The Most Dangerous RATs of 2022: A Comprehensive Overview

Discover the top Remote Access Trojans (RATs) of 2022, their features, and how they work in the hacking world.